Exercise 9.4.3

Separate variables in the Helmholtz equation in spherical polar coordinates, splitting off the radial dependence first. Show that your separated equations have the same form as Eqs. (9.74), (9.77), and (9.78).

Solution

The Helmholtz equation is the following PDE.

$$
\nabla^{2} \psi+k^{2} \psi=0
$$

Expand the Laplacian operator in spherical polar coordinates (r, θ, φ). Here θ is the angle from the polar axis.

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \varphi^{2}}+k^{2} \psi=0
$$

Separate variables by assuming a product solution of the form $\psi(r, \theta, \varphi)=R(r) F(\theta, \varphi)$ and substituting it into the equation.

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r}[R(r) F(\theta, \varphi)]\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} {\left[\sin \theta \frac{\partial}{\partial \theta}[R(r) F(\theta, \varphi)]\right] } \\
&+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}[R(r) F(\theta, \varphi)]+k^{2}[R(r) F(\theta, \varphi)]=0 \\
& \frac{F}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{R}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial F}{\partial \theta}\right)+\frac{R}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} F}{\partial \varphi^{2}}+k^{2} R F=0 \\
& \frac{F}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{R}{r^{2} \sin ^{2} \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial F}{\partial \theta}\right)+\frac{\partial^{2} F}{\partial \varphi^{2}}\right]+k^{2} R F=0
\end{aligned}
$$

Divide both sides by $R F$.

$$
\frac{1}{r^{2} R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{1}{r^{2} F \sin ^{2} \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial F}{\partial \theta}\right)+\frac{\partial^{2} F}{\partial \varphi^{2}}\right]+k^{2}=0
$$

Multiply both sides by r^{2} and bring the second term to the right side.

$$
\underbrace{\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+k^{2} r^{2}}_{\text {function of } r}=\underbrace{-\frac{1}{F \sin ^{2} \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial F}{\partial \theta}\right)+\frac{\partial^{2} F}{\partial \varphi^{2}}\right]}_{\text {function of } \theta \text { and } \varphi}
$$

The only way a function of r can be equal to a function of θ and φ is if both are equal to a constant λ.

$$
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+k^{2} r^{2}=-\frac{1}{F \sin ^{2} \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial F}{\partial \theta}\right)+\frac{\partial^{2} F}{\partial \varphi^{2}}\right]=\lambda
$$

The equation that F satisfies is

$$
-\frac{1}{F \sin ^{2} \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial F}{\partial \theta}\right)+\frac{\partial^{2} F}{\partial \varphi^{2}}\right]=\lambda .
$$

Assume a product solution of the form $F(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)$ and substitute it into the equation.

$$
\begin{gathered}
-\frac{1}{[\Theta(\theta) \Phi(\varphi)] \sin ^{2} \theta}\left\{\sin \theta \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial}{\partial \theta}[\Theta(\theta) \Phi(\varphi)]\right]+\frac{\partial^{2}}{\partial \varphi^{2}}[\Theta(\theta) \Phi(\varphi)]\right\}=\lambda \\
-\frac{1}{\Theta \Phi \sin ^{2} \theta}\left[\Phi \sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\Theta \Phi^{\prime \prime}(\varphi)\right]=\lambda \\
-\frac{1}{\Theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)-\frac{\Phi^{\prime \prime}}{\Phi \sin ^{2} \theta}=\lambda
\end{gathered}
$$

Multiply both sides by $\sin ^{2} \theta$ and bring the first term over to the right side.

$$
\underbrace{-\frac{\Phi^{\prime \prime}}{\Phi}}_{\text {function of } \varphi}=\underbrace{\lambda \sin ^{2} \theta+\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)}_{\text {function of } \theta}
$$

The only way a function of φ can be equal to a function of θ is if both are equal to another constant μ.

$$
-\frac{\Phi^{\prime \prime}}{\Phi}=\lambda \sin ^{2} \theta+\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)=\mu
$$

In summary, using the method of separation of variables reduces the Helmholtz equation in spherical polar coordinates to three ODEs - one in r, one in θ, and one in φ.

$$
\left.\begin{array}{rl}
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+k^{2} r^{2} & =\lambda \\
-\frac{\Phi^{\prime \prime}}{\Phi} & =\mu \\
\lambda \sin ^{2} \theta+\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right) & =\mu
\end{array}\right\}
$$

The first ODE leads to Eq. (9.78) by bringing λ to the left side and multiplying both sides by R / r^{2}. The second ODE leads to Eq. (9.74) by setting $\mu=m^{2}$ and multiplying both sides by -1 . The third ODE leads to Eq. (9.77) by setting $\mu=m^{2}$, bringing μ to the left side, and multiplying both sides by $\Theta / \sin ^{2} \theta$.

